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Given a bounded function f defined on a convex subset of Rn
, the two problems

considered are to find a quasi-convex (convex) function which is a best
approximation to f under the uniform norm. It is shown that if J is the greatest
quasi-convex (convex) minorant off, then f' = J+ c, for some c~ 0, is the maximal
best quasi-convex (convex) approximation to f Furthermore, the nonlinear
operator T defined by T(f) = f' is a Lipschitzian selection operator with some least
constant C( T), where C( T) :s; C( T') for all Lipschitzian operators T' which map f
to one of its best approximations. Thus T is optimal in this sense. © 1988 Academic

Press, Inc.

1. INTRODUCTION

In this article are considered two problems of uniform approximation of
a given function I by quasi-convex and convex functions. All functions are
defined and bounded on a convex subset of R n and no further conditions
are imposed on this subset. It is shown that if/is the greatest quasi-convex
(convex) minorant of J, then f' = / + c, where C = (1/2)11/-/11, is the
maximal best quasi-convex (convex) approximation to I in the two
respective problems. An explicit expression for the greatest quasi-convex
minorant is derived in terms of f It is shown that the mapping T with
T(f) =f' is Lipschitzian with a least constant C( T), where C(T) is the
smallest among all such Lipschitzian mappings which map I to one of its
best approximations; T is thus an optimal Lipschitzian selection operator.

Let S c Rn be a nonempty convex set and let B denote the Banach space
of all bounded real functions I on S with the uniform norm

11/11 =sup{l/(s)l:sES}.
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UNIFORM APPROXIMATION

An I in B is said to be quasi-convex if

I(AS + (1- A) t) ~ max{f(s),f(t)}

for all s, t ES and all 0;:;; A;:;; 1 [4,5]. Similarly,f is convex if

I(As+(I-A)t);:;;Af(s)+(I-A)/(t)
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(1.1 )

(1.2)

for all s, t ES and all 0 ~ A~ I [5,6]. It can be shown that I is quasi
convex if and only if one of the following holds. (i) 1- 1( - OC), IX] is convex
for all real IX, (ii) f - 1( - OC), IX) is convex for all real IX. Let K c B be the set
of all quasi-convex (convex) functions for the two problems. Given f in B,
let ,1(/) be the infimum of Ilf-kil for k in K. The problem is to find anI'
in K, called a best approximation to I from K, so that

A(f)= III-I'll =inf{llf-kll:kEK}.

We observe that the set of all convex functions is a closed convex cone;
however, the set of all quasi-convex functions is a closed cone but not
convex.

In general, the set Kf of all best approximations to I is not singleton. A
Lipschitzian selection operator T is a nonlinear operator which maps each
I in B to an I' in Kf and satisfies, for s9me least number C( T),

II T(f) - T(h)1I ;:;; qT) III- hll for allf, hE B.

T is an optimal Lipschitzian selection operator (OLSO) if qT) ~ qT') for
all Lipschitzian selection operators T '. In this article, we obtain a best
approximation I' to I so that T with T(f) =1' is an OLSO. We determine
q T) and the smallest number D so that

IA(f) - A(h)1 ~ D IIf- hll for all f, h EB. (1.3)

Given an f in B, we define its greatest quasi-convex (convex) minorant f
to be the largest quasi-convex (convex) function which does not exceed I at
any point in S, viz.,

f(s) = sup{k(s): kE K, k(s) ;:;;f(s) for all s in S}, s ES.

By (1.1) and (1.2) it is easy to verify thatfis indeed quasi-convex (convex).
We show that ,1(/)=(1/2) Ilf-fil and I' =f+A(f) is the maximal best
approximation to f, i.e., I' ?; g for all best approximations g to f Further
more, T defined by T(f) = I' is an OLSO with q T) = 2 and D = I. These
results are established in Sections 3 and 4 for the two problems respec
tively. In Section 3, we also obtain an explicit expression for the greatest
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quasi-convex minorant f of a given f In Section 2, we consider a uniform
approximation problem in a general setting which includes the two
problems as special cases and obtain results which lead to the derivation
ofI' and an OLSO T. Given I in B, let

Lf = {k E K: k(s) ~/(s) for all s in S}.

Note that Lf is convex if K is the set of all convex functions. Let 3(f) be
the infimum of 111- k II for k in Lf and consider the problem of findIng a
best approximation I' to I from Lfso that 3(f) = III- I'll. In Section 5, we
observe that f is the maximal best approximation to I from Lf and T with
T(f) =f is an OLSO with C(T) = 1 and 15 = 2, where 15 is the smallest
number satisfying (1.3) with D = Jj and L1 = X

The problems of quasi-convex and convex approximation on a real
interval 1= [a, b] have been investigated earlier in [8, 10]. The main
thrust there was algorithms for obtaining best approximations. An analysis
of OLSOs for these problems on I and generalized isotone optimization on
a partially ordered set appeared in [9, 11]. In this article, the quasi-convex
and convex problems are considered in a more general setting of a convex
subset S of R n without any additional constraints on S. Consequently, the
methods of analysis are different. Particularly, for the convex problem, a
Hausdorff metric-like function d is defined on the subsets of S c R with the
following property. The mapping of epigraphs of functions in B to its
convex hulls is nonexpansive with respect to d. This function plays a key
role in the analysis of OLSOs. The quasi-convex p·roblem considered
earlier [10] on an interval I, could be expressed in a setting of isotone
functions on totally ordered subsets of I by decomposing the cone of quasi
convex functions into convex cones of isotone functions. It was then
possible to isolate a "function interval" [u, v] of quasi-convex functions u,
v so that u and v as well as any quasi-convex function in this interval are
also best approximations. Due to a more general setting of the problem in
this article such an approach is not possible; however, it has been possible
to obtain an explicit expression for the greatest quasi-convex minorant in
terms ofI and then for the maximal best approximation1'. Applications of
these problems have been indicated to curve fitting and estimation in [9].
If T is an OLSO, then T(f) is a best fit to data points J, and T(f) is least
sensitive, among all best fits, to perturbations of f Finding continuous
selections, which are conceptually similar to OLSOs, has been a problem of
considerable interest in the literature; for a survey see [1]. Finally,
we point out that a class of approximation problems on the space of
continuous functions including the quasi-convex and convex problems is
considered in [12].
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2. PRELIMINARIES
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In this section, we derive results which will be used later.
Let G c B be nonempty. Given an f in B, let A(f) be the infimum of

IIf- g II for g in G. We consider the problem of finding a best
approximation I' in G so that A(f) = Ilf- I'll.

We impose the following two conditions on G.

(i) If gEG then g+CEG for all real c.

(ii) If G' eGis a set of functions uniformly bounded above on S,
then the function g', which is the pointwise supremum of functions in G', is
in G.

We observe that if f, h EB then

IA(f)-A(h)l:£ Ilf-hll·

See, e.g., [3, p. 17]. This follows immediately from

Ilh - gil :£ Ilf- gil + IIf- hll

by taking the infimum over g in G and then interchanging f and h.

(2.1 )

PROPOSITION 2.1. Let fE B and assume that conditions (i) and (ii) hold
for G. Define

G'= {gEG:g(s):£f(s) for all SES}.

Then G' is nonempty. Let

J(s) = sup{ g(s): g EG'}.

ThenJEG,

A(f) = (1/2) Ilf- JII, (2.2)

andI' =J + A(f) is the maximal best approximation to f, i.e., I' ~ g holds for
all best approximations g. Furthermore, iff, hE B then

and

III' - h'll :£ IIJ- hll + IA(f) - A(h)1

111'-h'll:£ IIJ-hll + IIf-hll.

(2.3 )

(2.4 )

Proof For g in G, let b(g) = IIf- gil. If g EG, then g - b(g):£f By
condition (i), g- b(g) is in G and hence in G'. Thus G' is nonempty and by
condition (ii),jE G. Clearly, g - b(g) :£J:£f Consequently,

O:£f- J:£f- g+ b(g):£ Ilf- gil + b(g) = 2b(g).
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Hence O(g) !?; 0(/)/2 for all g E G. Thus we have A(f) !?; 0(/)/2 =c, say. Let
f' = f + c. By condition (i), f' E G. Now f - f' =f - f - c. Hence we have

-c~f-f'~ Ilf-fll-c=c.

It follows that (2.2) holds and f' is a best approximation. Now, if g is a
best approximation, then g-A(f)~1 Since gEG, by condition (i),
g - A(f) E G'. Hence, g - A(f) ~f or g ~f'. Inequality (2.3) is immediate
and (2.4) follows from (2.1). The proof is now complete.

Using the definitions (1.1) and (1.2), one may easily verify that the above
conditions (i) and (ii) hold with G = K for the quasi-convex and convex
problems. Hence Proposition 2.1 applies. These investigations are pursued
further in the next two sections.

3. ApPROXIMATION BY QUASI-CONVEX FUNCTIONS

In this section, we apply the results of Section 2 to the quasi-convex
problem. We first derive an explicit expression for the greeatest quasi
convex minorant (GQM) f ofI

THEOREM 3.1. Let II be the set of all nonempty convex subsets of S. Let
fEB and define for each s E Sand P E ll,

Let

fO(s, P)=inf{f(t): tES-P},

= -00,

ifs¢ P,

otherwise.

/(s)=sup{f°(s,P):PEll}, SES.

Then fEB and is the greatest quasi-convex minorant ofI Furthermore, for
all real ex, we have

{SE S:f(s) < ex} =CO{SE S:f(s) < ex},

where co(A) is the convex hull of A eRn, i.e., the smallest convex set
containing A. Conversely, if the above equality holds for all ex for some f in B,
then f is the greatest quasi-convex minorant ofI

Prool We first show that f is quasi-convex. Let u, v E S, 0 < A< 1, and
x = AU + (1 - A) v. We assert that

(3.1 )
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for all P in II. To show (3.1), let PEn and assume that the left side of (3.1)
is finite. Then x ¢ P. Since P is convex this implies that at least one of u and
v is not in P. Suppose that u ¢ P and v E P. Then fO(x, P) =fO(u, P),
fO(v, P)= -00. Hence (3.1) holds. The other two cases where UEP, v¢P
and u ¢ P, v ¢ P are similar. This establishes (3.1). It follows at once that
J(x) ~ max {f(u),f(v)} , i.e., J is quasi-convex. Since fO(s, P) ~f(s) for all
P, we have J(s) ~f(s). Again, since fO(s, P) ~ - Ilfll if s is in S - P, we
conclude that JE B.

To show that J is the GQM ofJ, let h in B be any quasi-convex function
with h ~f Let s E Sand

Q= {tES: h(t)<h(s)}.

Then, by the quasi-convexity of h, Q is convex and s ¢ Q. Since
hO(s, P) ~ h(s) for all P and s ¢ Q, we conclude that hO(s, Q) = h(s). Hence
Ii(s) = h(s). Again, since h ~f we have that hO(s, P) ~fO(s, P) for all P.
Hence li(s)=h(s)~J(s). ThusJis the GQM.

To prove the remaining assertions, let A = (- 00, IX). Then, since J~J,

we have J- 1(A) ::Jf-l(A). By convexity of J- 1(A), we have J- 1(A)::J
co(f-l(A))=P, say. Now let SES andJ(s) < IX. We show that SEP. Since
P is convex, we have fO(s, P) ~J(s) < IX. Hence, by the definition of
fO(s, P), either s E P or s E S - P and there exists t E S - P such that f( t) < IX

which implies the contradiction that t E P. Hence s E P. To show the con
verse, we note that J satisfying the given equality for all IX is quasi-convex,
because the right hand side of the equality defines a convex set. Now let
h be quasi-convex and h ~ f Then we have h -l(A)::J f-l(A). Since the
former set is convex, h- 1(A)::Jco(f-l(A))=J- 1(A) holds for all IX. This
implies that h ~ f The proof is complete.

We remark that the last statement of the above theorem immediately
leads to an algorithm for computing J when S is a finite set.

THEOREM 3.2. Let fEB andJ be the greatest quasi-convex minorant off
Then A(f) = 0/2)lIf-!II, and I' + A(f) is the maximal best quasi-convex
approximation to f Furthermore, ifJ, hE B, then

Hence,

IIJ-lill ~ Ilf-hil. (3.2)

and

III' - h'li ~ IIf- hll, if A(f) =A(h), (3.3 )

III' - h'li ~ 2 Ilf- hll. (3.4)

The operator T: B -+ K defined by T(f) = I' is an optimal Lipschitzian
selection operator with C( T) = 2. Also D = 1.
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Proof The assertions concerning L1(f) and f' follow from Proposition
2.1. We now show (3.2). Let SES. Given e>O, there exists PEl1with s¢P
such that J(s) ~fO(s, P) + el2 and U ES - P such that hO(s, P)?3 h(u) - e12.
Then li(s)~hO(s, P) andfO(s, P)~f(u). Hence,

J(s) -li(s) ~fO(s, P) - hO(s, P) + el2 ~f(u) - h(u) + e~ Ilf-hil + e.

A symmetric argument completes the proof of (3.2). Now, (2.3) and (3.2)
give (3.3). Similarly, (2.4) and (3.2) establish (3.4).

To establish the optimality of T, we observe that (3.4) shows C( T) ~ 2. It
therefore suffices to show that C( T') ~ 2 for all selection operators T'. To
this effect we construct a sequence In, n = 1, 2, ..., of functions and a quasi
convex function h, all defined and bounded on S = [0, 3], such that

IIT'(fn)- T'(h)ll/llfn- h ll--+ 2

as n --+ 00 for all T'. Indeed, let

fn(s) = 1- 2s,

= -3+2s,

= 5 + 41n - 2(1 + lin) s,

h(s) = -2s,

= -4+2s,

=0,

Clearly,

f~(s) = 2 - 2s,

=0,

= 2(3 + 21n) - 2(1 + lin) s,

O~s< 1,

1~s< 2,

2 ~s ~ 3.

O~s< 1,

1~ s < 2,

2~s~ 3.

O~s<l,

1~s<3-1/(n+l)

3-1/(n+1)~s~3.

This example appears in [11]. It is easy to verify that T'(fn)(s)=O for
1~ s ~ 2 for any T. Also, T'(h) = h since h is quasi-convex. Hence,

IIT'(fn)- T'(h)11 ~ IT'(fn)(l)- T(h)(l)1 =2

and Ilfn-hll = 1+2In. It follows that C(T')~2. Hence C(T)=2. By (2.1)
we have D~1. Now since L1(fn)=l and L1(h)=O, we find that
1L1(fn) - L1(h )l/llfn - hll --+ 1. Thus D = 1. The proof is complete.

We remark that (2.1) does not imply D = 1 for approximation problems
in general. This is seen from the example of generalized isotone
optimization in [9].
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4. ApPROXIMATION BY CONVEX FUNCTIONS
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In this section, we apply the results of Section 2 to the convex problem.
We state our main result.

THEOREM 4.1. Let fE B and let I be the greatest convex minorant off
Then A(f)=(lj2)llf-lll, and !'=I+A(f) is the maximal best convex
approximation to f Furthermore, iff, hE B, then

Hence,

III-nil ~ Ilf-hll· (4.1 )

and

II!' - h'll ~ Ilf- hll, if A(f)=A(h), (4.2)

II!' -h'll ~21If-hll· (4.3 )

The operator T: B -. K defined by T(f) =!' is an optimal Lipschitzian
selection operator with C( T) = 2. Also D = 1.

For the purpose of analysis, we introduce some definitions and
terminology. Define a function d' on (S x R) x (S x R) as follows. Let
X= (s, u), y= (t, v), where s, tE S, u, vER, and

d'(x, y)= lu-vl,

= 00,

For UcSxR, xESxR, and r>O, let

if s = t,

otherwise.

d"(x, U) = inf{ d'(x, y): y E U}

and

Br(U)= {xESxR:d"(x, U)<r}.

Analogous to the Hausdorff metric [2], define a function d on the subsets
of Sx R by

d(U, V) = inf{r: UcBAV) and VcBr(U)},

where U, V c S x R. Note that °~ d ~ 00. For any f in B, let E(f) denote
the epigraph off [6, 7], viz.,

E(f)= {(s, U):SES, uER, u~f(s)}cSxR.
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It is easy to verify that if f, hE B, then

d(E(f), E(h» = Ilf - hll· (4.4 )

For U c S x R, we denote by co( U) the convex hull of U; since S x R is
convex, it is contained in S x R. It is easy to see that for f in B,

1(s) = inf{ u: (s, u) E co(E(f)}, S E S.

Consequently, iff, hE B then

d(co(E(f», co(E(h)) = III- Jill. (4.5)

Proof of Theorem 4.1. The assertions concerning A(f) and f' follow
from Proposition 2.1. To show (4.1), by (4.4) and (4.5) it suffices to show
that

d(co(E(f»), co(E(h»)) ~ d(E(f), E(h)). (4.6)

Let U = E(f) and V = E(h). If r >°and U c Br( V) and V c Br(U), then

co( U) c co(Br( V)) = Br(co( V»).

Similarly co( V) c B r ( co( U»). Hence, from the definition of d, (4.6) follows.
We show that T is optimal, exactly as in the proof of Theorem 3.2, by

using the following sequence of bounded functions fn, n = 1, 2, ..., on
S= [0,1]. This sequence appears in [9],

fn(s) = -1 + 2ns,

= 1,

o~s< lin,

lin ~ s ~ 1.

Then f~(s) =2s - lin, °~ s ~ 1. Let h =°on [0, 1]. It is easy to see that
f~ is the only best approximation to fn- Consequently, T'(fn) =f~ for
any selection operator T. Also T(h) = hi = h. Clearly, IIfn - hI! = 1,
Ilf~ - hili = 2 -lin. We therefore have

II T'(fn) - T(h)ll/llfn - hll -+ 2,

as n-+oo. Hence C(T')~2 and thus C(T)=2 by (4.3). Now
A(fn) = 1- lin and A(h) = 0. Consequently D = 1. The proof is complete.

We now derive a property off We note that the face of the convex set S
is convex and is closed relative to S. An extreme point of S is a zero
dimensional face of S. Also S is the disjoint union of relative interiors of
faces of S [6].
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PROPOSITION 4.1. Let P be a nonempty face of S. Let fE Band g be the
restriction off to P. Let g be the greatest convex minorant of g (over P).
Then g(s) = /(s) for all s in P. In particular, if s is an extreme point of S,
then f(s) = /(s).

Proof Since the restriction of / to P is convex, we have g(s)?; /(s) for
all s in P. Now define a function h in B by

h(s) = g(s),

= /(s),

SEP,

SES-P.

We show that h is convex by verifying (1.2) for h. Let s, t E S, 0 < A< 1, and
u = As + (1 - A) t. Since h = g ?; / on P and P is convex, it suffices to verify
(1.2) when u is in P. But since P is a face, this implies that s, t E P. We have
h = g on P and g is convex, hence (1.2) holds for h. SinceJis the GQM of
f, we conclude that h ~ / which gives g~ / on P. The last statement follows
from the fact that if s is an extreme point of S, then {s} is a face of S. The
proof is complete.

5. Two ApPROXIMATION PROBLEMS

Let fE B and let Lf , A(f), and jj be as defined in Section 1. We
consider the two problems of finding a best approximation I' to f from
Lf so that A(f) = Ilf - I'll, when K is the set of quasi-convex (convex)
functions. As before, a selection operator T maps an f in B to one of its
best approximations 1'.

THEOREM 5.1. Let fE B and let / be the greatest quasi-convex (convex)
minorant of f Then J in Lf is the maximal best approximation to f and
A(f) = Ilf - JII. The operator T: B --+ K defined by T(f) =J is an optimal
Lipschitzian selection operator with C( T) = 1. Also jj = 2.

Proof The assertions concerning J and A(f) follow immediately.
Clearly, (3.2) and (4.1) show that C(T)~ 1. If f and h are two distinct
functions in K, then, for any selection operator T, we have T'(f) = f
and T(h) = h. Consequently, C(T')?; 1 and thus C(T) = 1. Clearly,
A(f) = 2L1(f) and hence 15 = 2D = 2.

REFERENCES

1. F. DEUTSCH, A survey of metric selections, COn/emp. Math. 18 (1983), 49-71.
2. J. L. KELLEY, "General Topology," Van Nostrand, Princeton, 1955.
3. N. P. KORNEICHUK, "Extremal Problems in Approximation Theory," Nauka, Moscow,

1976.



336 VASANT A. UBHAYA

4. J. PONSTEIN, Seven kinds of convexity, SIAM Rev. 9 (1967), 115-119.
5. A. W. ROBERTS AND D. E. VARBERG, "Convex Functions," Academic Press, New York,

1973.
6. R. T. ROCKAFELLAR, "Convex Analysis," Princeton Univ. Press, Princeton N.J., 1970.
7. J. V. TIEL, "Convex Analysis," Wiley, New York, 1984.
8. V. A. UBHAYA, An O(n) algorithm for discrete n-point convex approximation with

applications to continuous case, J. Math. Anal. Appl. 72 (1979), 338-354.
9. V. A. UBHAYA, Lipschitz condition in minimum norm problems on bounded functions,

J. Approx. Theory 45 (1985), 201-218.
10. V. A. UBHAYA, Quasi-convex optimization, J. Math. Anal. Appl. 116 (1986), 439-449.
11. V. A. UBHAYA, Optimal Lipschitzian selection operator in quasi-convex optimization,

J. Math. Anal. Appl. 127 (1987), 72-79.
12. V. A. UBHAYA, Lipschitzian selections in best approximation by continuous functions,

J. Approx. Theory, in press.


